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We describe correlator product states, a class of numerically efficient many-body wave functions to describe
strongly correlated wave functions in any dimension. Correlator product states introduce direct correlations
between physical degrees of freedom in a simple way, yet provide the flexibility to describe a wide variety of
systems. We show that many interesting wave functions can be mapped exactly onto correlator product states,
including Laughlin’s quantum Hall wave function, Kitaev’s toric code states, and Huse and Elser’s frustrated
spin states. We also outline the relationship between correlator product states and other common families of
variational wave functions such as matrix product states, tensor product states, and resonating valence-bond
states. Variational calculations for the Heisenberg and spinless Hubbard models demonstrate the promise of
correlator product states for describing both two-dimensional and fermion correlations. Even in one-
dimensional systems, correlator product states are competitive with matrix product states for a fixed number of

variational parameters.
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I. INTRODUCTION

How can one efficiently approximate an eigenstate of a
strongly correlated quantum system? In one-dimensional
(ID) systems, the density-matrix renormalization group
(DMRG) provides a powerful and systematic numerical
approach.'?> However, the accuracy of the DMRG in two or
more dimensions is limited by the one-dimensional encoding
of correlations in the matrix product states (MPS) that form
the variational basis of the DMRG.? Generalizations of MPS
to higher dimensions—tensor network or tensor product
states (TPS) (Refs. 3—8)—have been introduced recently, but
these engender considerable computational complexity
(which does not arise with MPS). This has made it difficult
to practically extend the success and accuracy of the DMRG
to higher dimensions.

In this paper we examine a different class of quantum
states: correlator product states (CPS). Unlike MPS and
TPS, which introduce auxiliary degrees of freedom to gener-
ate correlations between physical degrees of freedom, CPS
correlate the physical degrees of freedom explicitly. The CPS
form has been rediscovered many times,’~!! but the potential
of CPS as an alternative to MPS/TPS for systematically ap-
proximating strongly correlated problems remains largely
unexplored. Here we take up this possibility. CPS share
many of the local properties of MPS/TPS but appear more
suitable for practical calculations in more than one dimen-
sion as well as for fermion systems. To establish the potential
of CPS, we analyze the relation between CPS and common
families of analytic and numerical trial wave functions. We
then discuss the most important properties of CPS: they per-
mit efficient evaluation of observables and efficient optimi-
zation. Finally, we present variational Monte Carlo calcula-
tions for both spin and fermion systems. Our CPS results
compare favorably with calculations using other variational
wave functions that contain a similar number of variational
parameters.

Note: As this paper was completed we were informed of
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recent work by Isaev et al.'?> on hierarchical mean-field

theory and by Mezzacapo et al.'® on entangled plaquette
states as well as earlier work on string-bond states.'* All
these studies consider wave functions similar to CPS and
share many of our own objectives. However, while our cur-
rent efforts are related, especially to Ref. 13, we focus on
aspects of CPS not addressed in these other works, such as
the relationship with well-known analytical and numerical
wave functions, and we consider different physical problems,
such as fermion simulations. Thus we regard our work as
complementary rather than overlapping.

II. CORRELATOR PRODUCT STATES

Consider a set of quantum degrees of freedom Q
={q,,¢»,...,q,} on a lattice with L sites in one or more
dimensions. Each g; might represent a spin S=1/2 degree of
freedom, where g € {1, |}, or a fermion degree of freedom, in
which case ¢ € {0, 1}. An arbitrary quantum state can be ex-
panded over all configurations as

|‘1’>=2\I’q‘qz“'qL|C]16]2~~~QL>~ (1)
{q}

A general quantum wave function requires an exponential
number of parameters—one for each configuration. One way
to reduce the complexity of the problem is to impose some
structure on the coefficients W(Q). CPS are one example of
this approach.

CPS are obtained by associating variational degrees of
freedom directly with correlations between groups of sites.
For example, in the nearest-neighbor two-site CPS, a cor-
relator is associated with each neighboring pair of sites

|\P>=2 H quqj|QI’ 741), (2)
fab @)

where (ij) denote nearest neighbors. The coefficients in Eq.
(1) are given by products of correlator coefficients. For ex-
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FIG. 1. Nearest-neighbor two-site and 2 X 2 plaquette CPS on a
2D lattice. The CPS weight for a given quantum configuration
|g1g2...q.) is obtained by multiplying correlator coefficients to-
gether as in Eq. (2).

ample, in a one-dimensional lattice, the amplitude of a con-
figuration is

W(Q) = C1192C293C9344 ., CIL-19L, (3)

Equation (2) can be extended to higher dimensions simply by
associating correlators with (overlapping) bonds on the lat-
tice (Fig. 1). The nearest-neighbor two-site CPS is an ex-
tremely simple CPS. Longer range correlations can be intro-
duced by removing the nearest-neighbor restriction on pair
correlations or by including explicit correlations among more
sites with correlators such as C7919243, Tt is clear that CPS
provide a complete basis: in the limit of L-site correlators,
the CPS amplitudes are precisely the coefficients of Eq. (1).

When there is a global constraint on the total spin S or
particle number N we can use projected CPS wave functions.
For example, for fixed particle number, the N-projected
nearest-neighbor two-site CPS is

|¥) = > quqjﬁNk]ls
{a} @)

,C]L> ’ (4)

where 13,\, ensures that 2,¢;=N. Such projections do not in-
troduce any complications in working with CPS and may be
included in both deterministic and stochastic calculations
without difficulty.

It is sometimes useful to write the CPS in a different
form. Each correlator element C%9 can be viewed as the

matrix element of a correlator operator C that is diagonal in
the quantum basis {|¢,q,)}:

<6]i%‘|Cij|qz"qJ"> = %q; 511,4; C7. (5)

The CPS wave function is obtained by acting a string of
commuting correlator operators on a reference state |®). For
example, a two-site CPS may be written as

[y =1 ¢ ®). (6)

i>j

When there are no constraints, the reference state is taken
to be an equally weighted sum over all quantum configura-
tions: |®)=2]q¢5...q;); otherwise, |®) is projected to sat-
isfy the constraint. For example, if particle number is fixed,
|®y) is an equally weighted sum over all quantum configu-
rations with particle number N,
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|‘DN>=213N|6116]2---6]L>- (7)
{q}

Note that both projectors and correlators are diagonal opera-
tors in the Hilbert space and commute with one another: this
means that the projection can be applied directly to the ref-
erence state and this simplifies numerical algorithms using
CPS. The operator representation is also useful when consid-
ering extensions to the CPS form such as alternative refer-
ence states.

III. CONNECTION TO OTHER WAVE FUNCTIONS

Many strongly correlated quantum states can be repre-
sented exactly as correlator product states. CPS also have
much in common with several classes of widely used varia-
tional wave functions: matrix product states, tensor product
states, and resonating valence-bond states. In this section, we
discuss the connections between these wave functions.

A. Huse-Elser wave functions

In their study of frustrated spin systems, Huse and Elser
constructed states in which the quantum amplitudes V(Q)
correspond to classical Boltzmann weights exp(—BE[Q]/2)
multiplied by a complex phase.'” The weights are derived
from an effective classical Hamiltonian H'. For example, in
the case of pairwise correlations, H! =Eijfzf; with ﬁff
=KU.§"3‘J The corresponding wave function can be repre-
sented as a two-site CPS with C¥/ =exp(—ﬁfzfj[/ 2+igy;), where
<2>,-j assigns a complex phase to the pair ij.

For the square and triangular Heisenberg lattices, Huse
and Elser demonstrated that a very compact variational
ground state could be obtained with a semianalytic three-

parameter model for H (containing up to three-site interac-
tions) and an analytically determined phase. Although CPS
can represent such highly constrained wave functions for
symmetric systems, it can also serve as the foundation of a
more general numerical method. By allowing correlators to
vary freely and by considering hierarchies of larger corre-
lated clusters, we can hope to construct rapidly converging
approximations to arbitrary strongly correlated quantum
states, as the DMRG does for one-dimensional quantum
problems.

B. Laughlin wave function

In 1983, Laughlin proposed a variational wave function to
explain the fractional quantum Hall effect.””> The Laughlin
wave function describes a strongly interacting system with
topological order. Like the Huse and Elser wave functions,
Laughlin’s wave function can be associated with the Boltz-
mann weights of an effective classical Hamiltonian and can
be represented exactly as a correlator product state.

The Laughlin quantum Hall state at filling fraction 1/m
can be written in first quantization as

245116-2



APPROXIMATING STRONGLY CORRELATED WAVE...

N
2
’\I,(rl, L) 9rN) = H (Z)\ - Z/,L)me_aEKlz,(‘ s (8)

A<pu

where z, is the (complex) coordinate of particle \. (A Greek
subscript indicates the coordinate of a particular electron. A
Roman subscript indicates the coordinate of a lattice site.)
Alternatively, the system can be mapped onto a discrete set
of coordinates z, ... ,z; with an associated set of occupation
numbers ¢, ... ,q;. Then Eq. (8) can be exactly expressed as
a two-site CPS in the occupation number representation

(W) =2 TT 11 c§uPylqy, ... ), )
{g i i<j
1
C1= —a\z~|2 > (10)
e “l
C —<1 ! ) (11)
z- 1 (Z,“Zj)m '

The CPS wave function exactly reproduces the Laughlin
wave function. It is, in some ways, more general than Eq.
(8). The CPS form could be used to extend the Laughlin state
beyond two-site correlators while maintaining antisymmetry
of the state, or to find a better variational energy in open or
disordered systems.

C. Toric code

Kitaev’s toric code is another interesting quantum state
with an exact CPS representation. Kitaev proposed the toric
code as a model for topological quantum computing. The
Hamiltonian is a sum of site and plaquette projectors on a
square lattice with spins placed on the bonds. On a torus, the
ground state of this Hamiltonian is fourfold degenerate with
a gap to all other excitations.'® It is an example of a quantum
system with topological order.

The ground state can be obtained from the zero-
temperature Boltzmann weights of a classical Hamiltonian

I:ICZ

mric:EDﬁDi . The sum is over all plaquettes [1;, and szi is
a product of S'Z operators associated with the spins on the
edges of the plaquette.* The amplitudes of the toric code
wave function can be generated by a CPS with plaquette

correlators

e ol @ okl
C%kl: 1 if S;S;SZSZ>O, (12)
0 if Sis/sts! <o.
The exact representation of the toric code and Laughlin’s
wave function demonstrates the ability of CPS to describe

systems with topological order.

D. MPS and TPS

Correlator product states are conceptually related to ma-
trix and tensor product states. All of these wave functions
can easily express entanglement between local degrees of
freedom. Nonetheless, CPS and MPS/TPS form different
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classes of quantum states and one is not a proper subset of
the other.

A MPS is obtained by approximating the quantum ampli-
tudes W(Q) in Eq. (1) as a product of matrices, one for each
site on the lattice

AL

igh”

W(Q) =D, AL AL (13)
{i}

iyiy Ty

The “auxiliary” indices {i} are contracted in a one-
dimensional pattern—a matrix product—and this gives rise
to the low computational cost of working with MPS. How-
ever, the one-dimensional structure prevents MPS from effi-
ciently describing correlations in higher dimensions. TPS ex-
tend MPS by approximating the amplitudes W(Q) by more
general tensor contractions. Because of the more compli-
cated contraction pattern, TPS can, in principle, describe
higher dimensional correlations.*%’” Unlike MPS, the TPS
contraction cannot be evaluated efficiently in general. This
leads to the high computational cost of working with TPS.

To demonstrate the relationship between CPS and MPS/
TPS, we consider a simple example of a nearest-neighbor
two-site CPS on a three-site lattice with periodic boundary
conditions. These CPS amplitudes are

P919293 = C9192(C9293C9391 (14)

Applying singular value decomposition to one of the correla-
tors gives

' =3 Ulov! =X Uy, (1)

where we have absorbed the diagonal matrix o; into W? .

With this decomposition, |¥) can be mapped to a MPS of
auxiliary dimension 2:

YN0 = > U?ll(W?le;Izz)(W?;U;};) W?;. (16)
{1}

This is equivalent to Eq. (13) with Af,=W{U{. The matrices
of the resulting MPS (of dimension 2) have a restricted form.
More complicated CPS (e.g., with three-site correlators) map
to MPS with larger auxiliary dimension and more flexible
forms for the matrices. (The dimension of the matrices grows
exponentially with the range or number of sites in the cor-
relator.) An arbitrary MPS cannot be mapped onto a CPS
with less than the complete basis of L-site correlators. Con-
versely, a one-dimensional CPS with long-range correlators
(such as the general two-site CPS used in the Laughlin state)
can only be represented by a MPS with an auxiliary dimen-
sion that spans the full Hilbert space. These arguments can
be extended to higher dimensions and similar conclusions
hold for the mappings between CPS and TPS. For a given
number of variational degrees of freedom, only a subset of
CPS can be exactly written as MPS/TPS and vice versa.

While the correlators in the CPS have no auxiliary indi-
ces, they could be augmented by additional auxiliary indices.
For example, string-bond states may be considered one-site
correlators with a pair of auxiliary indices.'* n-site correla-
tors can be generalized in an analogous way.
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The concept of an area law is sometimes used in the
analysis of wave functions. If the amount of entanglement
between a system and its environment scales with the area of
the boundary between the two, the system is said to obey an
area law. Arguments from quantum-information theory sug-
gest that wave functions that satisfy an area law can accu-
rately describe systems (in any dimension) with a finite cor-
relation length.'"” (Some critical systems with long-range
correlations also satisfy an area law, but others may violate
the area law at zero temperature.)

MPS wave functions satisfy a one-dimensional area law
and have a finite correlation length. (Long-range correlations
can be reproduced over a finite range, but they will eventu-
ally decay exponentially.) TPS satisfy area laws in two or
more dimensions. CPS with local correlators such as nearest-
neighbor pairs or plaquettes also satisfy an area law, making
them promising candidates for systems with a finite correla-
tion length. CPS with long-range correlators, such as those
used in the Laughlin wave function, are not constrained by
an area law and can describe even more entanglement be-
tween system and environment, obeying a volume law in-
stead.

E. RVB states

Resonating valence-bond (RVB) states are widely used in
strongly correlated quantum problems.'®!° A fermion RVB
state can be written as a product of a Jastrow factor and a
projected BCS wave function

|\PRVB> = 62"/"]"]"2’.]2/'131\]62"]‘)\ijal'Ta.lT'|VaC> N ( 1 7)

where J;; and \;; are commonly taken to be real.

There is a close relationship between CPS and RVB
states. At half-filling, the N-projected two-site CPS can be
expressed in the form of Eq. (17). Consider a dimer covering
of the lattice. Let A;;=1 for each pair ij that is connected by
a dimer and ;=0 otherwise. The corresponding projected
BCS state is the CPS reference |®y) defined earlier

A ot A
Pyei<ritilvacy = Py |q1qs ... qr) =[Py, (18)
{a}

If the Jastrow factor is allowed to become complex, then the
two-site correlator C¥ is fully parameterized as

and the CPS and RVB wave functions are identical.
Despite the existence of a mapping between the two wave
functions, the emphasis of the CPS parameterization is quite
different from that of commonly studied RVB states. For
fermion RVB wave functions where J;; is real, the Jastrow
factor is positive and the nodes of the fermion wave function
are those of the projected BCS state. In general, such a wave
function cannot be exact. In contrast, the CPS wave function
can modify the nodes of the reference wave function |®y)
through the complex Jastrow factor. By using higher order
correlators, the CPS state can therefore become exact. While
the most flexible RVB/CPS form would combine a complex
Jastrow factor with an arbitrary projected BCS reference,
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there are computational advantages to the simpler CPS ref-
erence, including the possibility to efficiently evaluate ob-
servables without the use of a stochastic algorithm.?

IV. COMPUTATIONAL COST OF CPS

To be useful in practical calculations, a variational wave
function must allow efficient evaluation of expectation values
and optimization of its parameters. This combination of
properties in matrix product states is responsible for the suc-
cess of the density-matrix renormalization group. The expec-
tation value of typical observables can be evaluated exactly
in a time which is polynomial in the size of the system.
Likewise, the amplitude of a given configuration can also be
evaluated exactly in polynomial time. As shown in Eq. (13),
the amplitude of a configuration is the trace of the product of
L-independent m X m matrices, where m is the dimension of
the auxiliary indices {i} and L is the number of lattice sites.
The cost for evaluating the amplitude is O(m?L).

Tensor product states generalize the structure of MPS to
higher dimensions, but numerical efficiency is lost. In
general, TPS amplitudes cannot be evaluated exactly in
polynomial time! Additional renormalization procedures
must be used while performing the contractions, which intro-
duces an error that depends on the system size. For fermions,
such errors can result in amplitudes or expectation values
incompatible with a fermion wave function as well as a
variational energy below the fermion ground state, a so-
called N-representability problem. As a result, only certain
classes of TPS are capable of efficient polynomial simula-
tion.

Like MPS, correlator product states allow efficient, exact
evaluation of wave-function amplitudes and expectation val-
ues. For example, the amplitudes of a pair CPS are V(Q)
=II;-;C%4. The amplitude is a simple product of numbers.
This is true for any CPS, and thus the complexity is propor-
tional only to the number of correlators in the ansatz. This is
manifestly polynomial in the system size. In general, evalu-
ation of the amplitude with n-site correlators will require
O(L) multiplications if the correlators act locally—e.g, near-
est neighbors, plaquettes, etc.—and O(L") if there are no
restrictions.

This property allows efficient Monte Carlo sampling of
expectation values. (Deterministic algorithms can also be
used but will be presented elsewhere.?’) Moreover, con-
straints such as fixed particle number or total spin are easily
handled within the Monte Carlo algorithm by limiting the
Metropolis walk to states that satisfy these constraints. The
expectation value of an operator is given by <(A)
=3,P(Q)A(Q), where P(Q)=[¥(Q)|* and

v(Q")

WQ) (20

AQ) =2 (QlA|Q")
Q!

The sum over Q' extends over only those Q' for which

(Q|A|Q'Y#0. As long as A is sparse in the chosen basis, its
expectation value can be evaluated efficiently. If |¥) is local
(e.g., nearest-neighbor pair CPS), a further simplification oc-

curs for operators such as aj'aj, aja}'aka,, or §;-S;. For these
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TABLE 1. Variational Monte Carlo energies (in units of J) using CPS for the 2D S=1/2 Heisenberg
model, including percent errors (AE). CPS[2] denotes nearest-neighbor two-site correlators and CPS[n X n]
denotes plaquette correlators. The “exact” 6 X6 and 8 X8 energies are obtained from a stochastic series
expansion MC calculation using ALPS (Ref. 21). Unlike matrix product states, correlator product states

maintain good accuracy as the width is increased.

AE AE AE
Lattice CPS[2] (%) CPS[2 X 2] (%) CPS[3 X 3] (%) Exact
Periodic Boundary Conditions
4x4 —-11.057(1) 1.5 —11.109(1) 1.1 —11.2202(2) 0.1 -11.2285
6X6 —-23.816(3) 2.6 —-24.052(2) 1.6 —24.313(2) 0.5 -24.441(2)
8 X8 —-41.780(5) 3.1 —-42.338(4) 1.8 —42.711(3) 0.9 -43.105(3)
Open Boundary Conditions

4X4 -8.8960(5) 32 —9.0574(4) 1.4 -9.1481(2) 0.5 -9.1892
6X6 -20.811(1) 4.2 -21.176(1) 2.5 -21.510(1) 1.0 -21.727(2)
8X8 —37.846(3) 4.5 -38.511(2) 2.8 -39.109(2) 1.3 -39.616(2)

operators, most of the factors in W(Q) and W(Q’) are iden-
tical and cancel from the ratio so that the time required to
evaluate the expectation value is independent of the system
size and depends only on the number of Monte Carlo
samples.

As with MPS and TPS, we can take advantage of the
product structure of CPS when minimizing the variational
energy and use an efficient local optimization or “sweep”
algorithm. The energy is minimized with respect to one of
the correlators while the others are held fixed, then repeated
for each of the correlators in turn until the energy has con-
verged. This algorithm is described in more detail in the next
section.

V. SPIN AND FERMION SIMULATIONS

We have implemented a pilot variational Monte Carlo
code to optimize general spin and fermion CPS wave func-
tions. In Tables I and II we present results for two models of
interacting spins and fermions: (i) the two-dimensional (2D)
square Heisenberg model defined by the Hamiltonian

()
and (i) a 1D spinless Hubbard model at half-filling. This
model is defined by the Hamiltonian

(21)

H= E - t(ajaj + aj-a,-) +Unpn;.

(i)
Each site can only be occupied or unoccupied, and the en-
ergy U is the cost of placing two fermions on neighboring

sites. We studied periodic and open boundary conditions for
both the Heisenberg and Hubbard models.

(22)

A. Optimization method

We optimize the correlators by minimizing the variational
energy with a sweep algorithm. At each step of each sweep,
a target correlator is updated while the other correlators are
fixed. Because the wave function | W) is linear in the target

correlator coefficients, the derivatives of |¥) with respect to
these coefficients define a vector space for the optimization.
For instance, if the target correlator has elements C*, then

the vector space is generated by the basis |\f’ u)» Where

)
V)= Scn

(23)

Any vector in this space defines a CPS wave function: x

corresponds to the wave function |W(x))=3 Mx'“|\l~f -

It is convenient to work in a slightly different basis in
which one vector x,, corresponds to the current value of the
target correlator and the other vectors x; are orthogonal to x,,
(but not necessarily to each other). The updated target cor-
relator will be a linear combination of the x, where «
{0,i}.

We construct the Hamiltonian H 4 and the overlap matrix
Syp in this space

Hop= (W(x,)|HW(xp), (24)

Sap=(V(xa)[V(xp)),

where H is the model Hamiltonian of Eq. (21) or (22). We
then solve the generalized eigenvalue problem

H-C=\S-C,

(25)

(26)

where C is a linear combination of the x,. The eigenvector
with the lowest eigenvalue defines the optimal target cor-

relator coefficients C* that give the lowest energy when all
other correlators are fixed. We sweep over all of the correla-
tors one at a time until the energy stops decreasing.

This defines a general sweep algorithm for optimizing
CPS. However to converge the sweeps when the Hamil-
tonian and overlap matrix are constructed via Monte Carlo
sampling it is very important to minimize the stochastic er-
ror. Nightingale and Melik-Alaverdian,”? and Toulouse and
Umrigar,?® defined efficient estimators for variational Monte
Carlo optimization, and we have used these to construct H
and S. For numerical stability, it is important to monitor the
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TABLE II. Variational Monte Carlo energies (in units of ) for the L-site 1D spinless Hubbard model with repulsion U using periodic and
open boundary conditions, including percent errors (AE). CPS[n] denotes n-site correlators; DMRG[m] denotes a DMRG calculation with
m renormalized states. Since CPS and DMRG calculations are not directly comparable in terms of complexity, the approximate number of
degrees of freedom per site (dof) is listed in the bottom row. (The numbers are exact in the limit of an infinite lattice.) Encouragingly, CPS
is competitive with MPS for a comparable number of variational parameters. Exact energies are from m=500 DMRG calculations.

AE AE AE AE
L U CPS[3] (%) DMRG(3] (%) CPS[4] (%) DMRG[4] (%) Exact
Periodic Boundary Conditions
12 0 —7.052(1) 5.5 -7.165 4.0 =7.213(1) 34 -7.313 2.0 —-7.464
12 4 -2.692(2) 4.1 -2.577 8.2 -2.756(1) 1.8 -2.725 2.9 -2.807
12 8 -1.461(1) 1.1 —-1.430 3.1 —-1.474(1) 0.2 —-1.462 1.0 -1.477
24 0 —14.432(2) 5.0 —-14.608 3.8 -14.714(2) 32 —-14.832 24 -15.192
24 4 —-5.34(1) 5.1 -5.340 5.1 -5.482(1) 2.6 -5.403 4.0 -5.626
24 8 -2.929(2) 0.8 —2.860 32 -2.931(1) 0.7 —2.900 1.8 —2.953
36 0 -21.82(1) 4.6 -22.035 3.6 -22.21(1) 2.8 —22.421 1.9 —22.860
36 4 -7.93(3) 6.0 -8.127 37 -8.17(1) 32 -8.173 32 —8.440
36 8 —4.390(2) 0.9 —4.302 2.9 —-4.400(1) 0.7 —4.355 1.7 —4.430
Open Boundary Conditions
12 0 —7.204(1) 1.3 -7.185 1.5 —-7.274(1) 0.3 —-7.265 0.4 -7.296
12 4 —3.748(1) 4.0 -3.787 3.0 -3.887(1) 0.5 -3.894 0.3 -3.905
12 8 -2.847(2) 4.6 -2.920 2.2 -2.971(1) 0.4 -2.981 0.1 —2.984
24 0 —14.593(1) 2.2 -14.609 2.1 —-14.767(1) 1.1 —-14.838 0.6 -14.926
24 4 -6.32(1) 7.8 —-6.543 4.5 -6.687(1) 24 —-6.803 0.7 —-6.851
24 8 -4.287(2) 6.6 -4.414 3.8 —-4.498(2) 2.0 -4.576 0.3 -4.590
36 0 -21.978(2) 2.6 -22.035 2.3 —-22.260(2) 1.3 -22.421 0.6 —22.562
36 4 -8.83(3) 9.1 -9.323 4.0 -9.36(1) 3.6 -9.625 0.9 -9.713
36 8 -5.660(2) 7.3 -5.873 3.8 -5.934(3) 2.8 -6.078 0.4 —-6.104
dof 8 18 16 32

change in the variational parameters and reject extremely
large changes during a single iteration.?* For CPS, this can
be achieved by adding a dynamically adjusted diagonal shift
to H that penalizes large changes away from CH: §H,=0,
J6H;;>0. Using this sweep algorithm, we find that the varia-
tional energy of the CPS converges (within statistical error)
in less than five sweeps.

To obtain the numbers in Tables I and II, we ran the
linear-optimization routine for each system through three or
four sweeps, after which the energy stopped decreasing and
instead fluctuated within a small range of values. We chose
one wave function (set of correlators) from the final sweep
and calculated the energy and variance reported in the tables
using a larger number of Monte Carlo samples than we used
during the optimization procedure.

B. Results

Table I shows the optimized energies obtained for the 2D
square Heisenberg model. This model tests the ability of CPS
to describe two-dimensional correlations. When open bound-
ary conditions are used, the system is not translation invari-
ant and requires the kind of general parameterization of the
CPS emphasized here rather than the more restricted forms
used by Huse and Elser.'?

The nearest-neighbor two-site CPS, CPS|[2], has only four
variational parameters per site and gives errors in the range
of 3—5 % for open boundary conditions and 1-3 % for pe-
riodic boundary conditions. The error is rapidly reduced by
increasing the correlator size. For example, for the 8§ X 8 pe-
riodic model, going from pair to 2 X 2 to 3 X 3 plaquettes, the
error goes from 3.1% to 1.8% to 0.9%. The rapid conver-
gence of the error with the correlator size is consistent with
the results of Mezzacapo et al.'* for hardcore boson systems
with periodic boundary conditions.

As discussed earlier, CPS with local correlators like those
used in Table I satisfy an area law, which allows them to
accurately simulate systems with a finite correlation length.
However, the 2D Heisenberg model is gapless with long-
range correlations, so we expect the error to increase as the
size of the lattice increases. Nonetheless, the energetic error
of the CPS wave function with a fixed correlator size grows
quite slowly as the lattice size is increased. This is not true of
MPS, in which the number of variational parameters per site
required to achieve a given accuracy grows rapidly with the
width of a 2D system.

We performed a series of DMRG calculations for the
Heisenberg model on the lattices in Table I with a range of
values of m using ALPS.>! The variational objects in the
DMRG are m X m matrices. For periodic boundary condi-
tions, m=35, 250, and 750 are required for 1 percent accu-
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racy on the 4 X4, 6 X6, and 8 X 8 lattices, respectively. The
latter calculation, which utilizes about 1.1 million variational
parameters per site (neglecting symmetry and conservation
of quantum numbers), is to be contrasted with the much
more compact description using the CPS with 3 X 3 correla-
tors, which corresponds to just 512 parameters per site.

The spinless 1D Hubbard model with periodic boundary
conditions has nontrivial fermion correlations and cannot be
mapped onto a local spin model. Consequently, this model
tests the ability of the CPS to capture fermion correlations. In
Table I we compare three-site and four-site nearest-neighbor
CPS energies, CPS[3] and CPS[4], with DMRG calculations
for m=3 and 4 renormalized states. DMRG calculations were
carried out using ALPS.?! For open boundary conditions, the
error in the CPS energy is smallest in the noninteracting
system and largest for an intermediate interaction strength
(U=4). For periodic boundary conditions, the CPS[4] errors
range from less than 1% for the U=8 case to approximately
3% for the free fermion system—a difficult limit for a locally
entangled state. The DMRG energies follow the same trends.

To make a meaningful comparison with the DMRG re-
sults, we also show the approximate number of variational
degrees of freedom per site in each ansatz. A DMRG[m]
wave function has O(2m?L) degrees of freedom (two
m X m matrices at each site) whereas the CPS[n] wave func-
tion has O(2"L) degrees of freedom (an n-site correlator at
each site). As a result, the CPS[4] wave function has a simi-
lar complexity to the DMRG[3] state. Depending on the
boundary conditions and the length of the lattice, the exact
number of degrees of freedom may be less than this estimate.
For instance, when L=12 for an open chain, the DMRG[3]
wave function has about 14.7 parameters per site and the
CPS[4] wave function has 12. Comparing the CPS and
DMRG calculations with similar numbers of variational pa-
rameters, we see that the CPS energies are indeed very com-
petitive, especially for periodic boundary conditions, where a
CPS includes direct correlations between the ends of the
chain.

Minimizing the CPS energy is a nonlinear optimization
problem and the sweep algorithm may not converge to the
global minimum of the variational energy. We have repeated
the optimization for different initial wave functions to avoid
local minima. The DMRG algorithm can also converge to a
local minimum for m=3 or 4. We repeated each of these
DMRG calculations 100 times with the same input and re-
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ported the lowest energy obtained in Table II. Although con-
vergence to local minima is possible in both CPS and DMRG
calculations, we believe the results reported in Tables I and II
indicate the competitive accuracy of CPS as a general varia-
tional method.

VI. CONCLUSION

In this paper, we evaluated correlator product states as a
route to describing strongly correlated wave functions in any
dimension. Our preliminary numerical studies indicate that
CPS can capture both nontrivial fermion correlations and
two-dimensional correlations. Together with the analysis
showing the connections between CPS and many interesting
quantum states, this supports the intriguing possibility that
CPS are sufficiently flexible to systematically approximate
general strongly correlated spin and fermion problems in two
or more dimensions.

Nonetheless, many questions remain to be answered. For
example, how well do CPS reproduce correlation functions?
While properties are harder to obtain accurately than ener-
gies in variational calculations, our view is that so long as
successive CPS[n] calculations form a sufficiently rapidly
convergent approximation to the quantum state of interest,
then accurate approximations to correlation functions can be
constructed, as in the case of DMRG calculations. Detailed
investigations of such questions and the analysis of more
complex systems like the full Hubbard model or the #-J
model will require more sophisticated numerical treatments
and alternative numerical techniques such as deterministic
evaluation methods. We are currently exploring these areas.
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